Installation Guide¶
Detailed installation instructions for various setups.
System Requirements¶
Minimum Requirements¶
- OS: Linux, macOS, Windows (WSL recommended)
- Python: 3.9 or higher
- RAM: 8GB minimum, 16GB recommended
- Storage: 10GB for models and datasets
Recommended Setup¶
- GPU: NVIDIA GPU with 8GB+ VRAM (for training)
- RAM: 32GB
- Storage: 50GB+ SSD
- Python: 3.11
Installation Methods¶
Method 1: From Source (Development)¶
Best for contributors and development:
# Clone repository
git clone https://github.com/zooai/gym.git
cd gym
# Create virtual environment
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install in editable mode
pip install -e .
# Install development dependencies
pip install -r requirements-dev.txt
Method 2: From PyPI (Stable)¶
For production use:
Method 3: From Docker¶
Pre-configured environment:
# Pull image
docker pull zooai/gym:latest
# Run container
docker run -it --gpus all -p 7860:7860 zooai/gym:latest
# Or build from source
docker build -t gym -f docker/Dockerfile .
docker run -it --gpus all -p 7860:7860 gym
Method 4: From Conda¶
Isolated environment:
# Create environment
conda create -n gym python=3.11
conda activate gym
# Install PyTorch (choose your CUDA version)
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
# Install Gym
pip install zoo-gym
GPU Setup¶
NVIDIA CUDA¶
For NVIDIA GPUs with CUDA support:
# Install PyTorch with CUDA 11.8
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
# Or CUDA 12.1
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
# Verify CUDA
python -c "import torch; print(torch.cuda.is_available())"
AMD ROCm¶
For AMD GPUs:
# Install PyTorch with ROCm
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm5.7
Apple Silicon (M1/M2/M3)¶
For Apple Silicon Macs:
# Install PyTorch with MPS support
pip install torch torchvision torchaudio
# Verify MPS
python -c "import torch; print(torch.backends.mps.is_available())"
CPU Only¶
For CPU-only systems:
Optional Dependencies¶
Flash Attention (Recommended)¶
Significantly speeds up training:
DeepSpeed (Multi-GPU)¶
For distributed training:
BitsAndBytes (Quantization)¶
For QLoRA and 4-bit training:
vLLM (Fast Inference)¶
For high-throughput serving:
Unsloth (2x Faster)¶
Optimized training kernels:
Verification¶
Check Installation¶
# Version check
python -c "import gym; print(gym.__version__)"
# GPU check
python -c "import torch; print(f'CUDA: {torch.cuda.is_available()}')"
# Full system check
gym doctor
Run Tests¶
# Install test dependencies
pip install pytest pytest-cov
# Run tests
pytest tests/
# With coverage
pytest tests/ --cov=gym --cov-report=html
Environment Variables¶
Configure Gym behavior:
# HuggingFace token (for gated models)
export HF_TOKEN=your_token_here
# Cache directory
export HF_HOME=/path/to/cache
# Mirror (China users)
export HF_ENDPOINT=https://hf-mirror.com
# DeepSeek API (for Continuous Learning)
export DEEPSEEK_API_KEY=your_key_here
# Logging
export PYTHONPATH=/path/to/gym:$PYTHONPATH
export LOG_LEVEL=INFO
Troubleshooting¶
Import Error: No module named 'gym'¶
Reinstall in development mode:
CUDA Version Mismatch¶
Check CUDA version:
Reinstall matching PyTorch:
pip uninstall torch torchvision torchaudio
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
Flash Attention Build Fails¶
Use pre-built wheels:
pip install flash-attn --no-build-isolation \
--find-links https://github.com/Dao-AILab/flash-attention/releases
Out of Memory¶
Use QLoRA with 4-bit quantization:
Slow Downloads¶
Use HuggingFace mirror:
Or download manually:
Uninstallation¶
# Remove package
pip uninstall zoo-gym
# Remove cache
rm -rf ~/.cache/huggingface
# Remove virtual environment
deactivate
rm -rf .venv
Next Steps¶
- Quick Start - Get training in 5 minutes
- First Training - Detailed training guide
- Continuous Learning - Advanced features