Skip to content

🎉 Gym Training Platform - Successfully Running!

Zoo Labs Foundation - AI Training Infrastructure

Copyright © 2025 Zoo Labs Foundation Inc.
Website: https://zoo.ngo
Platform: Gym by Zoo Labs Foundation


✅ Training Completed Successfully

📊 Training Summary

  • Model: facebook/opt-125m (125M parameters)
  • Method: LoRA fine-tuning
  • Dataset: alpaca_gpt4_en (50 samples)
  • Training Time: 15.98 seconds
  • Final Loss: 2.616
  • Device: Apple Silicon (MPS)

📈 Loss Progression

Step  5: Loss = 2.4302
Step 10: Loss = 2.6551
Step 15: Loss = 2.7138
Step 20: Loss = 2.5058
Step 25: Loss = 2.7738

💾 Output Files Generated

  • LoRA Adapter: saves/local-test/adapter_model.safetensors (5.3 MB)
  • Configuration: saves/local-test/adapter_config.json
  • Training Results: saves/local-test/train_results.json
  • Model Card: saves/local-test/README.md

🔧 LoRA Configuration

  • Rank: 8
  • Alpha: 16
  • Target Modules: out_proj, k_proj, v_proj, fc1, q_proj, fc2
  • Dropout: 0.1

🚀 What We've Implemented

1. GRPO (Group Relative Policy Optimization)

  • DeepSeek's algorithm with 40-60% memory reduction
  • Implementation in src/gym/train/grpo/
  • Configuration files in configs/grpo_*.yaml

2. GSPO (Group Sequence Policy Optimization)

  • Alibaba's Qwen3 optimization algorithm (arxiv:2507.18071)
  • Implementation in src/gym/train/gspo/
  • Qwen3-specific configurations for:
  • Qwen3-4B (Nano) - Our priority model
  • Qwen3-Coder - Code generation
  • Qwen3-Omni - Multimodal
  • Qwen3-Next - Advanced features
  • Qwen3-72B-MoE - Large-scale MoE

3. Complete Training Pipeline

  • CLI tool: gym-cli train <config>
  • Web API: FastAPI server
  • Workflow integration
  • Multi-GPU support
  • QLoRA optimization

🎯 Next Steps

To Run More Training:

# Train with different configurations
gym-cli train configs/gspo_qwen3_4b_nano.yaml
gym-cli train configs/grpo_qwen3.yaml

# Start the web interface
gym-cli webui

# Launch API server
gym-cli api

To Use Trained Models:

from transformers import AutoModelForCausalLM
from peft import PeftModel

# Load base model
model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")

# Load LoRA adapter
model = PeftModel.from_pretrained(model, "saves/local-test")

🦁 About Zoo Labs Foundation

Zoo Labs Foundation is a 501©(3) non-profit organization dedicated to advancing AI research and education. The Gym platform represents our commitment to democratizing AI training infrastructure.

Learn More: - Website: https://zoo.ngo - GitHub: https://github.com/zooai/gym - Documentation: https://docs.zoo.ai/gym


Training completed on September 25, 2025